블록체인 NEXT GENERATION

한국블록체인학회 학술대회 및 워크샵

Key Note Speaker 1 "Blockchain projects in Australia"

Ph.D. Ingo WeberPrinciple Research Scientist

Next Generation

Blockchain Research at Data61 (AAP Focus)

Blockchain Research at Data61

- Designing Systems with Blockchain
 - Design Trade-offs
 - Model-driven development
 - Governance and risk management

- Trustworthy Blockchain Systems
 - Formal

- Empirical

- Defining and Using Smart Contracts
 - As Legal Contracts

- Business Process

3 | Blockchain | Data61, CSIRO

Designing Systems with Blockchain

- Design Process
 - A taxonomy of blockchain-based systems for architecture design, X. Xu,
 I. Weber, M. Staples et al., ICSA2017.
 - The blockchain as a software connector, X. Xu, C. Pautasso, L. Zhu et al., WICSA2016.
- Quality Analysis
 - Comparing blockchain and cloud services for business process execution, P. Rimba, A. B. Tran, I. Weber et al., ICSA2017.
 - Predicting latency of blockchain-based systems using architectural modelling and simulation, R. Yasaweerasinghelage, M. Staples and I. Weber, ICSA2017.
- Model-Driven
 - Regerator: a Registry Generator for Blockchain, A. B. Tran, X. Xu, I. Weber, CAISE2017.
 - From business process models, see next slide
- · Integration with other systems
 - EthDrive: A Peer-to-Peer Data Storage with Provenance, X. L. Yu, X. Xu, B. Liu, CAISE2017.
- · Governance and risk management
 - Risks and Opportunities for Systems Using Blockchain and Smart Contracts, Treasury report

4 | Data61: Preliminary Findings on Blockchain/DLT Projects

Defining and Using Smart Contracts

- Business Process
 - Untrusted business process monitoring and execution using blockchain,
 - I. Weber, X. Xu, R. Riveret et al., BPM2016
 - Optimized Execution of Business Processes on Blockchain,
 - L. García-Bañuelos, A. Ponomarev, M. Dumas, Ingo Weber, BPM2017
- As Legal Contracts
 - Evaluation of Logic-Based Smart Contracts for Blockchain Systems,
 - F. Idelberg, G. Governatori, R. Riveret et al., RuleML2016

5 | Data61: Preliminary Findings on Blockchain/DLT Projects

Trustworthy Blockchain Systems

- Formal
 - The Blockchain Anomaly, C. Natoli, V. Gramoli, NCA2016
 - On the Danger of Private Blockchains, V. Gramoli, DCCL 2016
 - (Leader/Randomization/Signature)-free Byzantine Consensus for Consortium Blockchains, T. Crain, V. Gramoli, M. Larrea, M. Raynal, arXiv:1702.03068, 2016
- Empirical
 - New kids on the block: an analysis of modern blockchains, L. Anderson, R. Holz, A. Ponomarev et al., arXiv:1606:06530, 2016

• ...

6 | Data61: Preliminary Findings on Blockchain/DLT Projects

Projects with Australian Treasury

Jul 2016 – Mar 2017

- Budget 2016: Data61's blockchain review welcomed by fintech leaders
- Funded by National Innovation Science Agenda
- With assistance of The Treasury
- DLT Foresight
 - What might plausibly happen, across society & economy?
- Blockchain Proof-of-Concepts
 - What are technical risks & opportunities for use cases?

CSIRO's Data61 and Treasury join forces to examine the blockchain

Blockchain expected to change the way Australia's economy operates

ay 7 2016 at 12:15 AM Updated May 7 2016 at 12:15 AM

Treasury, CSIRO research potential of blockchain

7 | Blockchain | Data61, CSIRO

Architecting Applications on Blockchain

Based on [1,2,3]

Overview

- Many interesting applications for Blockchain
 - Basically of interest in most lack-of-trust settings where a distributed application can coordinate multiple parties
 - Examples:
 - Supply chains
 - Handling of titles, e.g., land, water, vehicles
 - Identity
 - Many startups and initiatives from enterprises / governments
- ... but also many challenges
 - When to use blockchain
 - · Trade-offs in architecture
 - Downsides: cost, latency, confidentiality
 - What to handle on-chain, what off-chain?

Our work - AAP team

- Architecting applications on Blockchain:
 - Taxonomy and design process [1]
 - "Cost of Distrust": how much more expensive is blockchain? [2]
 - Latency: simulation under changes [3]
- Model-driven development of smart contracts
 - Business process execution [4,5]
 - Model-based generation of registries and UIs: "Regerator" [6]

Taxonomy

Blockchain-related design decisions regarding (de)centralisation, with an indication of their relative impact on quality properties

Legend: \bigoplus : Less favourable, $\bigoplus \bigoplus$: Neutral, $\bigoplus \bigoplus \bigoplus$: More favourable

Deuten		Impact				
Design Decision	Option	Fundamental properties	Cost efficiency	Performance	#Failure points	
Colle	Services with a single provider (e.g., governments, courts)					
Fully Centralised	Services with alternative providers (e.g., banking, online payments, cloud services)	⊕	Cost efficiency HHH HHH HHH HHH HHH HHH HHH	1		
Partially Centralised &	Permissioned blockchain with permissions for fine-grained operations on the transaction level (e.g., permission to create assets)		⊕⊕ ⊕⊕	⊕⊕	*	
Partially Decentralised	Permissioned blockchain with permissioned miners (write), but permission-less normal nodes (read)	99				
Fully Decentralised	Permission-less blockchain	⊕⊕⊕	0	⊕	Majority (nodes, power stake)	
	,1	Fundamental properties		Performance	#Failure points	
~ ~~	Single verifier trusted by the network (external verifier signs valid transactions; internal verifier uses previously-injected external state)	00	ΦΦ	ФФ	1	
Verifier	M-of-N verifier trusted by the network	⊕⊕⊕	0	0	M	
	Ad hoc verifier trusted by the participants involved	Φ	⊕⊕⊕	ΦΦ	I (per ad hoc choice)	

11 | Blockchain Smart Contracts: Use and Application in BPM | Ingo Weber

Taxonomy

			Impact				
Design Decision		Option	Fundamental properties	Cost efficiency	Performance	Flexibility	
Item data	On-chain	Embedded in transaction (Bitcoin)	⊕⊕⊕⊕	0	0	⊕⊕	
		Embedded in transaction (Public Ethereum)		0000	Φ.	$\oplus \oplus \oplus$	
		Smart contract variable (Public Ethereum)		⊕⊕	⊕⊕⊕	•	
		Smart contract log event (Public Ethereum)		⊕⊕⊕	⊕⊕	$\oplus \oplus$	
	Off-chain	Private / Third party cloud	Φ	~KB Negligible	0000	0000	
		Peer-to-Peer system	Ф	⊕⊕⊕⊕	⊕⊕⊕	000	
Item collection	On-chain	Smart contract	0000	⊕⊕⊕⊕ (public)	0000	0	
item collection		Separate chain	0000	⊕ (public)	Φ	ӨӨӨӨ	
Computation	On-chain	Transaction constraints	0000			Φ.	
		Smart contract	ФФФФ	Φ	Φ.	0	
	Off-chain	Private / Third party cloud	⊕	0000	0000	0000	

Taxonomy

Blockchain-related design decisions regarding blockchain configuration

			Impact				
Design Decision		Option	Fundamental properties	Cost efficiency	Performance	Flexibility	
Blockchain scope		Public blockchain	⊕⊕⊕	Ф	0	•	
		Consortium/community blockchain	⊕⊕	⊕⊕	⊕⊕	$\oplus \oplus$	
		Private blockchain	0	⊕⊕⊕	⊕⊕⊕	$\oplus \oplus \oplus$	
Data structure		Blockchain	⊕⊕⊕	0	0	0	
		GHOST	⊕⊕	⊕⊕	⊕⊕	•	
		BlockDAG	⊕	⊕⊕⊕	⊕⊕⊕	$\oplus \oplus \oplus$	
		Segregated witness	⊕⊕⊕	⊕⊕	Φ.	•	
	Security- wise	Proof-of-work	000	Φ.	⊕	0	
		Proof-of-retrievability	⊕⊕⊕	0	Φ.	0	
C		Proof-of-stake	⊕⊕	⊕⊕	⊕⊕	⊕⊕⊕	
Consensus Protocol		BFT (Byzantine Fault Tolerance)	Φ.	⊕⊕⊕	⊕⊕⊕	0	
	Scalability- wise	Bitcoin-NG	⊕⊕⊕	0	0	0	
		Off-chain transaction protocol	Θ.	⊕⊕⊕	⊕⊕	$\oplus \oplus \oplus$	
		Mini-blockchain	⊕⊕	⊕⊕	Φ.	⊕⊕	
	Security- wise	X-block confirmation	Φ.	Ф	Φ.	000	
Protocol		Checkpointing	⊕⊕⊕	⊕⊕⊕	⊕⊕⊕	•	
Configuration	Scalability- wise	Original block size and frequency	000	n/a	Φ.	n/a	
		Increase block size / Decrease mining time	⊕	n/a	⊕⊕⊕	n/a	
	Security- wise	Merged mining	000	⊕⊕	Φ.	0	
New blockchain		Hook popular blockchain at transaction level	⊕⊕	Φ	⊕⊕	⊕⊕⊕	
		Proof-of-burn	•	Φ	⊕⊕⊕	ΦΦ	
	Scalability-	Side-chains	000	0	Φ.	0	
	wise	Multiple private blockchains	•	⊕⊕⊕	000	000	

13 | Blockchain Smart Contracts: Use and Application in BPM | Ingo Weber

Proposed design process (using Taxonomy) Trust Decentralization Has trusted authority? decentralised? How to decentralise Use traditional the authority? database (IV.A) Storage and computation: on-chain vs. off-chain (IV.B) Need a new Need multiple What type? blockchain? blockchains? What block size and What consensus What data structure? frequency? protocol? **Need anonymity** What incentive? mechanism? Where to deploy?

14 | Blockchain Smart Contracts: Use and Application in BPM | Ingo Weber

(IV.D)

Cost of Distrust

- RQ: How much more expensive is blockchain over Cloud services?
 - Lens: business process execution
 - AWS SWF vs. Ethereum public blockchain
 - In both cases: pay per instruction
 - Experiments on two use cases:
 - Incident management (literature)
 - 32 instances on public Ethereum vs. 1000 runs on SWF
 - Invoicing (industry, 5316 log traces, 65K events)
 - Full log replayed on SWF and private Ethereum
- Result:
 - 2 orders of magnitude more expensive to use blockchain
 - ~US\$ 0.35 per process instance on public blockchain
 - outweighed by cost of escrow (if needed) for about US\$ 10 of value

Latency simulation

- Goal: predict latency for blockchain-based application before building it
 - Challenge specifically for latency: mean and variation
- Means: Architecture performance modeling
 - Paladio Component Models with individual latency distributions + connections + probability of branching
 - Allows changing the models for What-If analysis
 - For instance: change inter-block time on private blockchain what does that mean for overall application latency?

Latency simulation

17 | Blockchain Smart Contracts: Use and Application in BPM | Ingo Weber

Latency: what if we change required number of confirmation blocks?

Using Smart Contracts for Business Process Monitoring and Execution

Based on [4,5]

Motivation

- Integration of business processes across organizations: a key driver of productivity gains.
- Collaborative process execution
 - Doable when there is trust supply chains can be tightly integrated
 - Problematic when involved organizations have a lack of trust in each other
 - → if 3+ parties should collaborate, where to execute the process that ties them together?
 - Common situation in "coopetition"

Motivation: example

Issues:

- Knowing the status, tracking correct execution
- Handling payments
- Resolving conflicts

- → Trusted 3rd party ?
- → Blockchain!

Approach in a nutshell

- Goal: execute collaborative business processes as smart contracts
 - Translate (enriched) BPMN to smart contract code
 - Triggers act as bridge between Enterprise world and blockchain
 - Smart contract does:
 - Independent, global process monitoring
 - Conformance checking: only expected messages are accepted, only from the respective role
 - Automatic payments & escrow
 - Data transformation
 - Encryption

Architecture

23 | Blockchain Smart Contracts: Use and Application in BPM | Ingo Weber

Runtime

- Instantiation:
 - New instance contract per process instance
 - Assign accounts to roles during initialization
 - Exchange keys and create secret key for the instance
- Messaging:
 - Instead of sending direct WS calls: send through triggers & smart contract
 - · Instance contract handles:
 - Global monitoring
 - Conformance checking
 - Automated payments*
 - Data transformation*

Runtime

- Instantiation:
 - New instance contract per process instance

25 | Blockchain Smart Contracts: Use and Application in BPM | Ingo Weber

Collaborative processes: variants

Mediator (orchestration)

Choreography → C-Monitor

26 | Blockchain Smart Contracts: Use and Application in BPM | Ingo Weber

- Translate subset of BPMN elements to Solidity
 - BPMN Choreography diagrams or regular BPMN models with pools

27

1. Translate BPMN control flow to WFnet (proven to be safe)

- 1.Translate BPMN control flow to WFnet (proven to be safe)
- 2. Capture dataflow and conditions

- 1.Translate BPMN control flow to WFnet (proven to be safe)
- 2. Capture dataflow and conditions
- 3. Reduce WFnet and annotate dataflow

- 1.Translate BPMN control flow to WFnet (proven to be safe)
- 2. Capture dataflow and conditions
- 3. Reduce WFnet and annotate dataflow
- 4. Translate into Solidity code
 - Status of the process is kept in a bit vector
 - Updates are bit-wise operations

- 1.Translate BPMN control flow to WFnet (proven to be safe)
- 2.Capture
- 3.Reduce
- 4.Translat
 - Status
 - Update

```
Bit vector check: does pos 1
   have value "1"?
   contract BPMN contract {
     uint marking |= 1;
     uint predicates = 0;
     function Chec Application ( - input params - ) returns (bool) {
        if (marking & 2 == 2) { // is there a token in place p_1?
          // Task B's script goes here, e.g. copy value of input params to contract variables
          uint tmpPreds = 0:
          if (-eval P - ) tmpPreds = 1; // is loan application complete?
          if (-eval Q -) tmpPreds = 2; // is the property pledged?
          step (
             marking & uint (\sim 2) | 12,
                                                  // New marking
             predicates & fuint (~3) | The Preds // New evaluation for "predicates"
          return true;
15
16
        return false;
17
18
          Bit vector update: set pos 1 to "0"
                                                    set pos 2 and 3 to "1"
```

Payments, escrow, data handling

- Payment / escrow using crypto-coins:
 - Instance contract has an account
 - Only the contract code governs what gets paid out, but anyone can pay in
 - Contract can base validity of transactions on associated payments
 - Anyone can see balance of the contract enables trust:
 - All parties know when the money is there
 - The contract code specifies who gets paid how much, and when
- Data:
 - Status update data has to readable for the contract, most other data can be encrypted
 - Data used in conditions has to be readable
 - Sending data over blockchain is costly can split on-chain vs. off-chain
 - On-chain: URI to the data + hash
 - Off-chain: reachable and addressable data store (IPFS, S3, ...)

Evaluation (1/3)

- 4 use case processes, 1 of them from industry with 5316 traces and 65K events
- Executed ~150K transactions on private and 256 TXs on public Ethereum blockchain
- 1.Correct execution (conformance checking): 100% correct classification

2.Cost:

- Per process instance: cost on average of 0.0347 Ether (~\$0.40) before optimization
- After optimization:
 - About 25% reduction for industrial process (Opt-CF)
 - Up to 75% reduction if smart contract can be reused (Opt-Full)

Evaluation (1/3)

- 4 use case processes, 1 of them from industry with 5316 traces and 65K events
- Executed ~150K
 Ethereum blockc
- 1.Correct executio classification

2.Cost:

- Per process instar optimization
- After optimization
 - About 25% redu
 - Up to 75% redu

Process	Tested	Variant	Avg. (Savings		
	Traces	Att Assatted at the work of the west	Instant.	Exec.	_	
Invoicing	5316	Default	1,089,000	33,619	-	
invoicing	5316	Opt-CF	807,123	26,093	-24.97	
		Opt-Full	54,639	26,904	-75.46	
Supply	62	Default	304,084	25,564	=	
chain		Opt-CF	298,564	24,744	-2.48	
		Opt-Full	54,248	25,409	-42.98	
Incident	124	Default	365,207	26,961	_	
mgmt.		Opt-CF	345,743	24,153	-7.04	
		Opt-Full	54,499	25,711	-57.96	
Insurance	279	Default	439,143	27,310	_	
claim	219	Opt-CF	391,510	25,453	-8.59	
		Opt-Full	54,395	26,169	-41.14	

Evaluation (2/3)

- 3. Latency and throughput
 - Primary source of latency: mining time
 - Public Ethereum blockchain: median time between blocks set to 13-15s
 - Private blockchain: can control it

Evaluation (2/3)

Evaluation (3/3)

- 4. Throughput: optimized implementation can fill up each block
 - Limit: blockchain network-defined gas limit

Summary

- Blockchain is a hot topic
 - Goal for AAP team: excellent science where there is genuine value
- Software design and model-driven development for applications using blockchain
 - Taxonomy and design process
 - Latency simulation
 - Cost comparison
 - Model-driven development: registries and business processes
- Using Blockchain for process monitoring and execution
 - Applicable in lack-of-trust settings for collaborative process execution
 - Compile process model into smart contract, with highly beneficial features

References

- Xiwei Xu, Ingo Weber, Mark Staples, Liming Zhu, Jan Bosch, Len Bass, Cesare Pautasso, and Paul Rimba. A taxonomy of blockchain-based systems for architecture design. In ICSA'17: IEEE International Conference on Software Architecture, Gothenburg, Sweden, April 2017.
- 2. Paul Rimba, An Binh Tran, Ingo Weber, Mark Staples, Alexander Ponomarev, and Xiwei Xu. *Comparing blockchain and cloud services for business process execution*. In ICSA'17: IEEE International Conference on Software Architecture, short paper, Gothenburg, Sweden, April 2017.
- 3. Rajitha Yasaweerasinghelage, Mark Staples, and Ingo Weber. *Predicting latency of blockchain-based systems using architectural modelling and simulation*. In ICSA'17: IEEE International Conference on Software Architecture, short paper, Gothenburg, Sweden, April 2017.
- Ingo Weber, Sherry Xu, Regis Riveret, Guido Governatori, Alexander Ponomarev and Jan Mendling. Untrusted business process monitoring and execution using blockchain. In BPM'16: International Conference on Business Process Management, Rio de Janeiro, Brazil, September, 2016
- Luciano García-Bañuelos, Alexander Ponomarev, Marlon Dumas, and Ingo Weber. Optimized Execution of Business Processes on Blockchain. In BPM'17: International Conference on Business Process Management, Barcelona, Spain, September 2017
- 6. An Binh Tran, Xiwei Xu, Ingo Weber, Mark Staples, and Paul Rimba. Regerator: a registry generator for blockchain. In CAiSE'17: International Conference on Advanced Information Systems Engineering, Forum Track (demo), June 2017.
- 7. Xiwei Xu, Cesare Pautasso, Liming Zhu, Vincent Gramoli, Alexander Ponomarev, An Binh Tran and Shiping Chen. *The blockchain as a software connector.* In: WICSA, Venice, Italy, April, 2016
- Luke Anderson, Ralph Holz, Alexander Ponomarev, Paul Rimba, Ingo Weber. New kids on the block: an analysis of modern blockchains. http://arxiv.org/abs/1606.06530